Transportation Infrastructure in Alabama
Bridging the Data & Information Gap

TRIP GENERATION

TRIP DISTRIBUTION

MODAL SPLIT/ASSIGNMENT

ANALYSIS

Planning Factors - Value of Shipments, Personal Income, Population/Employment Industry Cluster Analysis

Presented to the Federal Transit Administration
Office of Research, Demonstration and Innovation

November 20, 2008
Washington, D.C.

This research was sponsored by the U.S. Department of Transportation, Federal Transit Administration, Project No. AL-26-7262-01.
Alabama Overview

State Business Climate Rankings 2004 – 2007

<table>
<thead>
<tr>
<th>Ranking Organization</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollina Corporate Top Ten Pro-Business States</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Small Business and Entrepreneurship Council – Small Business Survival Index</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Fortune Small Business - 10 Best States for Starting a Business</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Site Selection Magazine – Business Climate Survey</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

The Reason Foundation Report on System Performance of State Highway Systems

- 29th in urban interstate congestion, with 45.98 percent congested.
- 39th in rural and urban interstate condition.
- 28th in deficient bridges — 24.93 percent of the state’s bridges are deemed structurally deficient or functionally obsolete.
- 40th in the nation in fatality rates per 100 million vehicle miles traveled.

Expansion Management “work force training rankings”
Alabama Industrial Development & Training

<table>
<thead>
<tr>
<th></th>
<th>2000 - #7</th>
<th>2002 - #4</th>
<th>2004 - #1</th>
<th>2006 - #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001 - #7</td>
<td>2003 - #6</td>
<td>2005 - #2</td>
<td>2007 - #1</td>
<td></td>
</tr>
</tbody>
</table>
Project Tasks

• **Task 1. Development of a Freight Analysis Zones**
 – Develop the methodology for the establishment of Freight Analysis Zones in Alabama.
 – Apply the FAZ methodology to freight in Alabama through the development of various freight flow models using the different zone structures.
 – Perform analysis to compare different FAZ structures to county level freight planning zones to determine the benefits and costs.

• **Task 2. Expansion and Enhancement of the Alabama Transportation Infrastructure Model (ATIM)**
 – Regionalization through tying ATIM and VITS
 – Improve Graphics
 – The application of system performance measures within ATIM
 – Exercise ATIM through running scenarios from other transportation entities
 – The development of a methodology for determining rural time of day percentages
 – Evaluation of Commuter Rail Service in an Alabama MPO
Project Tasks (2)

• Task 3. Modeling intermodal operations using discrete event simulation

• Task 4. Continuous improvement in logistics & transportation systems
 – What are the best performing logistics companies?
 – What are the characteristics of the best performing companies?
 – How do their activities relate to lean thinking?
 – Development of lean logistics & transportation principles.

• Task 5. Develop the Repository for Transportation Related Data and Information for Alabama and the Tennessee Valley Region

• Task 6. Student Research Initiatives
The Freight Planning Framework

Task 1 – Freight Analysis Zones / Freight Planning Factors

Task 2 – Enhance ATIM

Task 3 & 4 – Intermodal Ops/Logistics

Task 5 – Data Repository

Planning Factors – Value of Shipments, Personal Income, Population/Employment

Industry Sector Analysis
Investigation of Freight Planning Factors

Factors Investigated
- Value of Shipments
- Personal Income
- Employment
- Population

Findings
- Value of Shipments and Personal Income provides a better prediction of freight than any other combinations.
- Findings are not conclusive but they are encouraging.
FAZ Approach

• Cluster Analysis of County Data
 – Hierarchical Clustering
 • Wards Method
 – Variables
 • Economic Variables
 – Employment
 – Value of shipments
 – Personal income
 • County Location Data
 – Longitude
 – Latitude
 – Distance from Interstate

• Initial Clusters developed within interstate boundaries
• Clusters revised based on industry type and growth projection
The Development of Freight Analysis Zones
Analysis of FAZ vs Counties

Scatter plot for the 67 County Model

Scatter plot for the 27 FAZ Model
A Methodology to Use FAF2 Data to Forecast Statewide External-External Trips
Freight Analysis Framework v. 2.2

- 114 Zones
- 17 Ports of Entry
- 43 Commodities
- 7 Modes
From Orlando Thru Alabama
• Developed queries in Access to export the IE and EI trips

• Exported the entire database to develop the EE trips – used C++ program flowcharted
Commodity Specific EE Flows

Base metal flows through Alabama
Initial Validation at State Boundary

<table>
<thead>
<tr>
<th>Trucks/day ALDOT</th>
<th>Tons/Year Model</th>
<th>Tons/Day</th>
<th>Tons/Truck</th>
<th>Pounds/Truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>I65</td>
<td>7,768</td>
<td>52,071,250</td>
<td>142,661</td>
<td>18.37</td>
</tr>
<tr>
<td>I59</td>
<td>4,758</td>
<td>47,408,170</td>
<td>129,885</td>
<td>27.30</td>
</tr>
<tr>
<td>I20</td>
<td>14,531</td>
<td>38,163,040</td>
<td>104,556</td>
<td>7.20</td>
</tr>
<tr>
<td>I85</td>
<td>6,070</td>
<td>42,259,400</td>
<td>115,779</td>
<td>19.07</td>
</tr>
<tr>
<td>I10E</td>
<td>6,334</td>
<td>13,234,480</td>
<td>36,259</td>
<td>5.72</td>
</tr>
<tr>
<td>I10W</td>
<td>9,979</td>
<td>22,101,760</td>
<td>60,553</td>
<td>6.07</td>
</tr>
<tr>
<td>I59W</td>
<td>8,875</td>
<td>107,198,800</td>
<td>293,695</td>
<td>33.09</td>
</tr>
</tbody>
</table>

Weighted average of tons per truck crossing Alabama’s borders is 15 tons. Variances in weight results from differences in commodities being shipped different directions.
Application of FAF2 - Statewide

Change in Truck Volumes

<table>
<thead>
<tr>
<th>Interstate</th>
<th>2015</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-22</td>
<td>4,820</td>
<td>7,230</td>
</tr>
<tr>
<td>I-65</td>
<td>-920</td>
<td>-1,400</td>
</tr>
<tr>
<td>I-20</td>
<td>3,900</td>
<td>5,830</td>
</tr>
</tbody>
</table>
Application of FAF2 – Statewide/MPO

- Internal to Zone 1
- Internal to Zone 2
- From Zone 1 to Zone 2
- From Zone 2 to Zone 1
- From Zone 1 to locations outside Alabama
- From Zone 2 to locations outside Alabama
- From outside Alabama to Zone 1
- From outside Alabama to Zone 2
- National Pass-Through
FAF2 - Alabama Statewide Model

\[PA_i = (NFD)^* \left[\frac{W_1 * P_i}{\sum P_j} + \frac{W_2 * PI_j}{\sum I_j} + \frac{W_3 * E_j}{\sum E_j} + \frac{W_4 * VOS_i}{\sum VOS_j} \right] \]

\[\sum PA_i = \sum NFD_{ab} \]
\[\sum_{i=1}^{4} W_i = 1 \]
\[W_i = \text{Range}(0,1) \]
Montgomery Example

Office for Freight, Logistics & Transportation
Pass Through Montgomery

Office for Freight, Logistics & Transportation
EE Project Conclusions

• Effective use of FAF2

• Enhance statewide models

• Transferable to MPO models
Freight Planning Framework

Planning Factors – Value of Shipments, Personal Income, Population/Employment

Industry Sector Analysis
Trend Line vs Industry Sector Projections

Current congestion locations

Congested locations using trend line analysis

Congested locations using the FAF2 2015 projection
<table>
<thead>
<tr>
<th>Locations Where Travel Time Exceeds 25% Using the FAF2 2015 Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Apparent discrepancy between the congestion calculations.</td>
</tr>
<tr>
<td>• The models are indicating that there are locations of congestion defined by the v/c where vehicle travel times are less than free flow speed but greater than the 25% threshold</td>
</tr>
</tbody>
</table>
Doubling of Truck Traffic

These scenarios assume static capacity.
Model Enhancement

• The Alabama Transportation Infrastructure Model (ATIM) has been very successful as a communication and educational tool.

• Unfortunately, after two years of continued development it became obvious that the software used to create and run the discrete event simulation, ProModel, was at the limits of its capabilities.

• The UAH research team was working with the University of Hamburg on a separate project where the Hamburg team was working in the Java-based programming environment for discrete event simulation.

• The capability of Java expands the capabilities of discrete event modeling into “agent-based” simulation where each entity in the model is capable of using a logic framework to maneuver the simulated network.

• This capability overcomes many of the limitations the UAH research team had encountered with ProModel and adds desirable capabilities.
Agent Based JAVA ATIM V2.0

Core functions originally outlined for this initial development phase were:

- Fully dynamic movement of individual vehicles
- Dynamic route-planning
- High flexibility of inputs
- Graphical display of vehicles
• **Multiple lanes**—Virtually any primary or secondary road has multiple lanes of traffic, while virtually any urban surface street likely has multiple lanes and/or turn lanes. Therefore, one of the first future developments will likely be incorporation of multiple lanes in the model and the logic for lane changes.

• **Local traffic**—Interest has already developed in modeling local urban traffic, such as that of Birmingham or Mobile. Because of the flexibility of our model, the only real changes is the input files; however, pre-run data conditioning, we have found, is an important step to realistic modeling.

• **Multi-modal traffic**—Inclusion of rail and ship traffic is a logical next step for our model development. Model flexibility allows these networks and “vehicles” to be included easily.
• **Additional routes**—ATIM V2.0 provides for rapid inclusion of new roadways. One simply needs to add the appropriate nodes and links to the input files, and the model takes care of the rest.

• **Incident Simulation** - The agent-based capability allows each driver to make route decisions based upon the incident and their knowledge of the transportation network.

• **Conclusion** - ATIM V2.0 is a powerful, flexible and extensible agent-based model of freight traffic on Alabama roadways.

 – In a few short months, the research team has incorporated a large number of core functionalities ready for verification and validation study.

 – The validated model will allow further development in exciting new areas and expand the capacity to communicate transportation systems and issues, and potential solutions, to decision makers.
Rural Time of Day

Urban vs. Rural Interstate - Hourly Distribution from ALDOT Count Stations

Hourly Profile Comparisons – ALDOT, NCHRP, QRFM
Mobile, AL

Convergence of Two Interstates: I-10 running EW I-65 running NS
Mobile’s Freight Reality

- 5 class A Railroads in Mobile
- Mouth of Alabama’s inland Waterways; 4500 miles of system via Tenn-Tom
- 25 steam ship agencies
- 4 foreign trade zones
- 60 trucking companies
- 4 bulk liquid terminals
- 13 warehouses, 9 of which are US Customs bonded
- 16 shipbuilding or ship repair companies
Mobile’s 2007 Network

Red=Capacity Deficiency

Interstate 65
Traffic Count = 98,500
Capacity = 88,800

Wallace Tunnels
Traffic Count = 67,000
Capacity = 56,000
Activity in Mobile

- Thyssen Krupp
- Choctaw Point
- Northrup Grummond / EADS
- Expansion of Austal Ship Building
- Berg Steel
Why Should We Start Planning for Freight at the MPO level?

• It is pretty obvious

• Plan will include a truck matrix to preload prior to equilibrium assignment
 – Ability to validate freight movements
 – Ability to forecast freight movements and potential conflicts; identify projects

• Regional freight profile, with potential freight projects identified as an element to TLRP

• We don’t want infrastructure to be an impediment to our growth
• Compared Ktons crossing AL to ALDOT

• 28,800 lbs / truck

• Factor 20% empty

• 35,500 lbs / truck

• Use FAF2 2035 Forecast to determine E-E flow on I-10 and I-65
Port Analysis

• 2002 and 2035
• Being verified to actual Port Data
Freight Trips Generated

<table>
<thead>
<tr>
<th>Shipments Per Employee</th>
<th>Inbound</th>
<th>Outbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 - Food</td>
<td>16.0</td>
<td>26.3</td>
</tr>
<tr>
<td>10-12 - Construction Mat'l's</td>
<td>161.4</td>
<td>166.9</td>
</tr>
<tr>
<td>17 - Petroleum</td>
<td>100.9</td>
<td>257.1</td>
</tr>
<tr>
<td>20 - Chemicals</td>
<td>12.0</td>
<td>26.6</td>
</tr>
<tr>
<td>24 - Plastics</td>
<td>68.8</td>
<td>193.8</td>
</tr>
<tr>
<td>26 - Wood Products</td>
<td>406.9</td>
<td>-</td>
</tr>
<tr>
<td>28 - Paper</td>
<td>51.0</td>
<td>63.0</td>
</tr>
<tr>
<td>30 - Textiles</td>
<td>28.2</td>
<td>11.4</td>
</tr>
<tr>
<td>32 - Primary Metals</td>
<td>50.1</td>
<td>60.1</td>
</tr>
<tr>
<td>33 - Fabricated Metals</td>
<td>19.1</td>
<td>23.6</td>
</tr>
<tr>
<td>34 - Machinery</td>
<td>32.7</td>
<td>21.2</td>
</tr>
<tr>
<td>37 - Transportation</td>
<td>3.9</td>
<td>17.8</td>
</tr>
<tr>
<td>40 - Misc. Manufacturing</td>
<td>0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>41 - Waste/Scrap</td>
<td>13.9</td>
<td>7.9</td>
</tr>
<tr>
<td>42 - Mixed Freight</td>
<td>17.5</td>
<td>57.3</td>
</tr>
<tr>
<td>Overall</td>
<td>23.1</td>
<td>36.9</td>
</tr>
</tbody>
</table>
Mode Choice & Freight Distribution

<table>
<thead>
<tr>
<th>Type of Vehicles Used</th>
<th>Inbound</th>
<th>Outbound</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck</td>
<td>64.0%</td>
<td>77.5%</td>
<td>70.0%</td>
</tr>
<tr>
<td>Rail</td>
<td>22.0%</td>
<td>10.0%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Water</td>
<td>12.0%</td>
<td>12.5%</td>
<td>12.2%</td>
</tr>
<tr>
<td>Air</td>
<td>20.0%</td>
<td>0.0%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freight O/D In/Outside</th>
<th>Origins</th>
<th>Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/in Mobile County</td>
<td>14.5%</td>
<td>16.4%</td>
</tr>
<tr>
<td>Outside Mobile County</td>
<td>84.5%</td>
<td>80.7%</td>
</tr>
<tr>
<td>Local Port</td>
<td>1.0%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freight O/D Compass Direction</th>
<th>Origins</th>
<th>Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>25.5%</td>
<td>30.2%</td>
</tr>
<tr>
<td>East</td>
<td>59.4%</td>
<td>12.3%</td>
</tr>
<tr>
<td>West</td>
<td>14.5%</td>
<td>57.5%</td>
</tr>
<tr>
<td>South</td>
<td>0.6%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Tunnel – Commuter Rail

Run Description

<table>
<thead>
<tr>
<th>Run</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run1 (Baseline)</td>
<td>Existing traffic volumes</td>
</tr>
<tr>
<td>Run2</td>
<td>Increase traffic volume to 60%</td>
</tr>
<tr>
<td>Run3</td>
<td>Increase traffic volume to 65%</td>
</tr>
<tr>
<td>Run4</td>
<td>Increase truck traffic 5%</td>
</tr>
<tr>
<td>Run5</td>
<td>Increase truck traffic 10%</td>
</tr>
<tr>
<td>Run6</td>
<td>Decrease car traffic 5% and increase truck traffic 5%</td>
</tr>
<tr>
<td>Run7</td>
<td>Decrease car traffic 5% and increase truck traffic 10%</td>
</tr>
<tr>
<td>Run8</td>
<td>Decrease car traffic 10% and increase truck traffic 15%</td>
</tr>
<tr>
<td>Run9</td>
<td>Decrease car traffic 10% and increase truck traffic 20%</td>
</tr>
</tbody>
</table>

Westbound Lanes in Tunnel

- **Passenger Car**
- **Delivery Truck (2 Car Spaces)**
- **18-wheel Truck (2.5 Car Spaces)**
Tunnel Simulation Results

- A 15% increase in truck traffic with a 10% decrease in passenger car traffic (Run8) resulted in a volume to capacity ratio of 89%.

- A further increase in truck traffic to 20% with a 10% decrease in passenger car traffic (Run9) also resulted in a volume to capacity ratio of 89%.

- The ability to move passenger vehicles off of the road by implementing a commuter rail system will provide time for capacity solutions to be implemented.
Conceptual Framework for Simulation

• The focus of this research is on developing a conceptual framework that reduces the impact of many difficulties.

• When effectively done, simulations can be inexpensive insurance against costly mistakes, especially when significant capital expansions are being considered, as is the case with the large capital investments at seaports.

• This framework greatly reduced the time for development, model debugging, and verification and validation.

• Simulations using the conceptual framework
 • Coal Terminal Model
 • Intermodal Center Model
 • Container Terminal Model
 • Minimizing Disruption caused by Container Inspection at an Intermodal Terminal
Student Research Initiatives

• A Methodology to Use FAF2 Data to Forecast Statewide External-External Trips

• Final Report: The Impact of BRAC on Freight Movement Within North Alabama

• Effectively Using the QRFM to Model Truck Trips in Medium-sized Urban Communities
Published and Accepted Peer Review Papers
Published Journal Articles

Published Conference Proceedings
• 2nd Annual National Urban Freight Conference
“Using Simulation to Evaluate and Improve the Operations of a Seaport Container Terminal,” Gregory A. Harris, Lauren Jennings and Bernard J. Schroer, University of Alabama in Huntsville; Huntsville, AL, and Dietmar P.F. Moeller, University of Hamburg; Hamburg, Germany

• 10th International Conference on Application of Advanced Technologies in Transportation

Published Conference Proceedings

- *Transportation Research Forum Annual Conference*

- *Huntsville Simulation Conference*

“Simulating the Impact of Increased Truck Traffic through Tunnel Crossing Mobile River,” Gregory Harris, Mike Spayd, Michael Anderson and Bernard Schroer, University of Alabama in Huntsville, Huntsville, AL USA, and Dietmar P.F. Moeller University of Hamburg, Hamburg, Germany

“Container Security Inspection: Simulation to Evaluate Various Container Sampling Plans on Port Operations," Gregory Harris, Maruf Rahman and Bernard Schroer, University of Alabama in Huntsville, Huntsville, AL USA, and Dietmar P.F. Moeller University of Hamburg, Hamburg, Germany

“Conceptual Framework for Simulating Seaport Terminals,” Bernard Schroer, Maruf Rahman, and Gregory Harris, University of Alabama in Huntsville, Huntsville, AL USA, and Dietmar P.F. Moeller University of Hamburg, Hamburg, Germany

“Container Terminal Simulation,” Gregory A. Harris, Lauren Jennings and Bernard J. Schroer, University of Alabama in Huntsville; Huntsville, AL, and Dietmar P.F. Moeller, University of Hamburg; Hamburg, Germany
Submitted Journal Papers

“Simulation of an Intermodal Container Center Served by Air, Rail and Truck,” Bernard J. Schroer, Gregory A. Harris and William Killingsworth, University of Alabama in Huntsville, Huntsville, AL USA, and Dietmar P.F. Moeller, University of Hamburg, Hamburg, Germany
SUBMITTED to the JOURNAL of ADVANCED TRANSPORTATION

“Using FAF2 Data to Analyze Freight Impact of Interstate 22,” Michael D. Anderson, Mary Catherine Dondapati, and Gregory A. Harris, The University of Alabama in Huntsville, Huntsville, AL, USA
SUBMITTED to the JOURNAL of TRANSPORTATION RESEARCH FORUM

“A Freight Planning Framework,” Gregory A. Harris and Michael D. Anderson, University of Alabama in Huntsville, Huntsville, AL, USA
SUBMITTED to TRANSPORT POLICY

Accepted Conference Papers

“Developing Freight Analysis Zones at a State Level: A Cluster Analysis Approach,” Gregory A. Harris, Phillip A. Farrington, Michael D. Anderson, Niles Schoening, James Swain, and Nitin Sharma, University of Alabama in Huntsville, Huntsville, Alabama
Transportation Research Board Annual Meeting, January 2009

“Resources to Minimize Disruption Caused by Increased Security Inspection of Containers at an Intermodal Terminal: Application of Simulation,” Gregory A. Harris, Bernard J. Schroer, Michael D. Anderson, University of Alabama in Huntsville, Huntsville, AL, USA, and D.P.F. Moël­ler, University of Hamburg, Hamburg, Germany
Transportation Research Board Annual Meeting, January 2009

“The Application of Lean Enterprise to Improve Seaport Operations,” Nicholas Loyd, Lauren C. Jennings, Jeff Siniard, Michael L. Spayd, Anthony Holden, and George Rittenhouse, University of Alabama in Huntsville, Huntsville, AL
Transportation Research Board Annual Meeting, January 2009
Conclusions

• The Freight Analysis Zone research led to the development of a methodology for integrating freight into the transportation models and plans at the state level and at the Metropolitan Planning Organization (MPO) level.

• The Freight Planning Framework (FPF) is a significant step forward in freight planning and modeling.

• There is also a significant amount of research to do to refine each individual part of the FPF process.

• This will be a main focus as the UAH research team continues on the path to improve the ability of states, regional planning offices (RPOs) and MPOs to integrate freight considerations into plans and activities.
Next Steps

1. Research & Development of the Freight Planning Framework (FPF)
 a. Trip Generation - Development of Freight Data and Analysis Methodologies and Tools
 i. New freight planning factors will be developed and utilized to provide more accurate input to the state and MPO Transportation Planner

 b. Trip Distribution – Integration of Freight and Transit System Loads
 i. Develop appropriate planning levels for freight and how they relate to traditional TAZs.
 ii. Once the planning level is determined, integrate and distribute the load on the transportation network.
 iii. Develop integration methods and techniques of freight, transit and passenger travel loads.

 c. Modal Split and Assignment – State and Local Simulations
 i. Continue development of Version 2.0 of the ATIM model in JAVA including the incorporation of infrastructure alternatives, improved graphics capabilities, the ability to model incidents, queues and recovery time to fully understand the traffic flow.

 d. Analysis – System Performance Measures
 i. Develop and evaluate transportation system performance measures at the state and MPO level.
2. Evaluation of Alternative Transportation Modes for Improving Transportation and Freight Flow
 a. Evaluation of Commuter Rail Service Application Between Birmingham, AL and Montgomery, AL.
 b. Evaluation of the Utilization of the International Intermodal Center in Huntsville, AL as an Inland Container Facility for the Port of Mobile.

3. Enhancement and expansion of the application of continuous improvement principles for port operations
 a. Enhancement of Lean Principles in Port Operations Training Class to Include Container Terminal Operations
 b. Expand Lean Training Offerings Customized for Port Operations

4. Student Research Initiatives
The Final Draft research report has been uploaded to the Freight Data Repository and can be found at:

http://www.uahcmer.com/cmer/data/transporation-infrastructure-alabama

Thank You

Questions?

Gregory A. Harris, Ph.D., P.E.
The University of Alabama in Huntsville
256-824-6060
harrisg@uah.edu